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1. Introduction

In economics two distinct concepts of technical efficiency have
emerged. The first concept, associated with Debreu (1951) and
especially Farrell (1957), is related to the traditional radial efficiency
measure. Focusing on input efficiency, it is defined as the minimal
equiproportionate reduction in all inputs which still allows produc-
tion of given outputs. This radial measure implicitly defines technical
efficiency relative to the isoquant of technology. This radial input
efficiency measure is the inverse of the input distance function that
itself is dual to the cost function (Shephard, 1970). The second
concept stems from the work of Koopmans (1951) who provided a
definition of technical efficiency that focuses on the efficient subset of
technology, but who refrained from defining a related efficiency
measure. In his view a producer is technically efficient if an increase in
any output or a decrease in any input requires a decrease in at least
one other output, or an increase in at least one input. Thus, for each
technology for which isoquant and efficient subset diverge, there is a
potential conflict between both technical efficiency concepts.

To evaluate observations relative to this efficient subset, the
theoretical literature has suggested a variety of non-radial efficiency
indices as alternatives to the standard radial index which can conflict
with Koopmans' definition of technical efficiency. A first article
proposing an axiomatic approach to the problem is Färe and Lovell
(1978) who suggested four properties that a measure of input
efficiency should satisfy and proposed an alternative non-radial
efficiencymeasure satisfying these axioms. This has led to a discussion
in which these properties were scrutinized (e.g., Russell, 1985) and
alternative non-radial efficiency measures were proposed (e.g.,
Zieschang, 1984).

More recently, a generalization of the Shephard (1970) distance
function has been proposed known as the directional distance
function to analyze both consumption and production theory. First,
Luenberger (1992) defined the benefit function as a directional
representation of preferences, thereby generalizing Shephard's
(1970) input distance function defined in terms of a scalar output
representing utility. Second, Luenberger (1995) introduced the
shortage function which accounts for both input contractions and
output improvements and which is dual to the profit function.
Chambers et al. (1996) relabel this same function as a directional
distance function and since then it is commonly known by that name.
The latter authors analyze both the benefit function and the input-
oriented directional distance function in some depth and extend the
composition rules of McFadden (1978) to these new concepts.1 For
instance, a structural difference between directional compared to
traditional distance functions is that the former have an additive
structure while the latter are multiplicative in nature.
sis could also apply to other general distance functions (for
's, 1978 gauge function or the generalized distance function of
9).
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However, while clearly generalizing existing distance functions,
this directional distance function basically remains a functional
representation of the isoquant of technology and hence the same
problems alluded to before reappear in this new framework.
Therefore, this contribution aims to revisit the issue of measuring
efficiency with regard to the efficient subset in an input-oriented
directional distance function perspective, to remain compatible with
the original discussion that also took an input orientation.

Section 2 introduces the basic notation, the assumptions on
technology, and some basic definitions like the relevant subsets of
technology and the input directional distance function. Section 3
summarizes the original axiomatic literature on efficiency in terms of
radial efficiency measures and redefines these same axioms for
directional efficiency measures. Section 4 redefines the Färe and
Lovell (1978), Zieschang (1984) and other efficiency measures in an
input directional distance perspective and checks which of the new
axioms are being satisfied. A final section concludes.

2. Notations, assumptions on technology, and basic concepts

Following the theoretical literature, the papermainly concentrates on
input efficiency. Technology describes all possibilities to transform input
vectors x = x1; ⋯; xNð Þ∈RN

þ into output vectors y = y1; ⋯; yMð Þ∈RM
þ . The

production possibility set or technology T summarizes the set of all
feasible input and output vectors: T={(x,y)∈ R

N+M
+ : x can produced y}.

Given our focus on input-oriented efficiencymeasurement, technology is
represented by its input sets:

L yð Þ = x∈RN
þ : ðx; yÞ∈ T

n o
: ð2:1Þ

We assume the following properties on the input sets:

L.1: L 0ð Þ = RN
þ and y≠0⇒0∉L(y);

L.2: Let yn∈RN
þ;n≥0 such that limn→∞yn=+∞,

then ∩n→∞L(yn)=∅;
L.3: L(y) is a closed set;
L.4: x∈L(y) and x′≥x⇒x′∈L(y);
L.5: x∈L(y)⇒λx∈L(y) for all λ≥1;
L.6: x∈L(y)⇒x+αg∈L(y) for g∈RN

þ and all α≥0.

Apart from the usual regularity assumptions (possibility of
inaction, boundedness, and closedness), note that we do not impose
any convexity assumption on the input sets. Three different input
disposability assumptions can be alternatively imposed on the input
sets. L.4 is the usual strong or free disposability of inputs assumption,
while L.5 is its weak equivalent. The last assumption L.6 is termed g-
input disposability: it is an input free disposability assumption in a
specific direction g. This new assumption generalizes L.4: both
assumptions are equivalent if g=11N, where 11N is the unit vector
inRN . In the following, wemainlymake use of L.4 and L.6. L.5 is mostly
added for the sake of completeness, since it is related to the definition
of technologies capable to detect congestion. In this contribution,
congestion is simply interpreted as a special form of technical
inefficiency.

Let us define the isoquant of an input set as

IsoqL yð Þ = x∈L yð Þ : λx∉L yð Þ;∀λ∈ 0;1½g:½f ð2:2Þ

The weak efficient subset is defined by

WEffL yð Þ = x∈L yð Þ : ubx⇒u∉L yð Þf g; ð2:3Þ

and the weak efficient subset in the direction of g of an input set as

WEffgL yð Þ = x∈L yð Þ : x−βg∉L yð Þ;∀β N 0f g; ð2:4Þ
where g∈RN
þ. Finally, the efficient subset of an input set is defined as

EffL yð Þ = x∈L yð Þ : u≤x and u≠x⇒u∉L yð Þf g: ð2:5Þ

Notice that the weak efficient subset in the direction of g slightly
differs from the usual notion of isoquant and weak efficient subset. A
directional weak efficient subset uses the same direction g for all
points of the input set, while the usual isoquant takes a direction
following the input vector. Obviously, if g∈RN

++ , then we have:

WEffgL yð Þ = WEffL yð Þ:

It is well known that EffL(y) pWEffL(y) p IsoqL(y) p L(y). Obvi-
ously, one can also write that EffL(y) p WEffgL(y) p L(y).

Focusing on directional measures, let us denote x + Rg the
affine line in RN defined by x + Rg = x + αg : α∈Rf g. We
define the input directional distance function as follows: Di : RN

þ ×
RM

þ × RN
þ→R∪ −∞; + ∞f g as

Di x; y; gð Þ = sup β : x−βg∈L yð Þf g if x + Rg∩L yð Þ≠�
−∞ if x + Rg∩L yð Þ = � :

�
ð2:6Þ

This is related to the Debreu (1951)–Farrell (1957) input efficiency
measure (DFi(x,y)) as follows: Di(x,y ;0)=1−DFi(x,y) for g=x.
Notice that different choices of direction vector may lead to different
interpretations: e.g., choosing g=x guarantees a proportional
interpretation (see Briec, 1997).

This input directional distance function is dual to the cost function
(see Chambers et al., 1996). Furthermore, it is well known that, under
L.1 to L.4, this input directional distance function exhibits, among
others, the following properties:

Di x + αg; y; gð Þ = Di x; y; gð Þ + α ð2:7Þ

and

Di x; y; gð Þ≥0⇔x∈L yð Þ: ð2:8Þ

The first property is a translation property. The last equivalence
relation establishes that the input directional distance function
completely characterizes technology (Chambers et al., 1996).

In the following section, we briefly present the results of different
articles that are all aiming at defining the “best” input efficiency
measure satisfying certain axioms following the seminal article of Färe
and Lovell (1978). We also redefine these same axioms from the
perspective of directional efficiency measurement.

3. An axiomatic approach to technical efficiency measurement

3.1. Axioms for radial efficiency measures

Färe and Lovell (1978)first suggested four properties that ameasure
of input efficiency should satisfy. These properties have been discussed
in several contributions and particularly in Russell (1985, 1988). Let
E : RN

þ × RM
þ→Rþ∪ −∞f g∪ + ∞f g be an efficiency measure. Formally,

the desired properties were stated by Färe and Lovell (1978) as:

FL.1: If x∈L(y),yN0, then E(x,y)=1⇔x∈EffL(y);
FL.2:If x∈L(y) and λx∈L(y), then E(λx,y)=λ−1E(x,y) for all

λ∈ [λ0,+∞[, where λ0 satisfies λ0x∈ IsoqL(y);
FL.3: If x∈L(y),yN0, u≥x and u≠x, then E(x,y)NE(u,y);
FL.4: If x∈L(y),yN0 and x∉EffL(y), then E(x,y) should compare to
some x⁎∈EffL(y).

The first axiom requires that input vectors are efficient if and only
if they belong to the efficient subset. The second axiom imposes
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3 However, this property might not be desirable under all assumptions imposed on
technology. Indeed, we do not impose any strong disposability assumption in general.
But, under a weak input disposability assumption, the technology may well be input
homogeneity of degree minus one, e.g., a doubling of the input vector
used by the inefficient observation halves its efficiency measure. The
third axiom is strict negative monotonicity, i.e., increasing one input
while holding all other inputs and outputs constant must lower the
efficiency measure. The final axiom insists that inefficient input
vectors be compared with respect to vectors in the efficient subset.

As pointed out by Russell (1985), the fourth property is
mathematically ill defined. Furthermore, if mathematically inter-
preted in terms of a distance metric, then it can be shown that it is
implied by the first three axioms. Consequently, this property is
dropped in the remainder of the discussion. Furthermore, both Bol
(1986) and Russell (1988) have shown that (FL.1), (FL.2) and (FL.3)
are not compatible.

Färe and Lovell (1978) have shown that the radial Debreu (1951)–
Farrell (1957) efficiency measure satisfies the homogeneity property
(FL.2), but it fails the other three criteria for technologies satisfying L.1
to L.3 and L.5. They proposed to use another measure which they
termed the Russell efficiency measure and which we refer to as the
Färe–Lovell efficiency measure.2 However, as noted by Färe et al.
(1983), this measure does not satisfy the homogeneity property, but
only a sub-homogeneity property of degree minus one. Moreover,
Russell (1985) proves that it also fails to satisfy the strictmonotonicity
property (FL.3). Zieschang (1984) proposed a hybrid of the Debreu–
Farrell and the Färe–Lovell efficiency measures. While this efficiency
measure satisfies homogeneity of degree minus one, it does not
always satisfy the monotonicity property. Finally, Färe (1975) defined
an asymmetric input efficiency measure that looks for a proportional
reduction of each input separately and then takes the minimum over
these scalings (see also Färe et al., 1983). This asymmetric measure
only satisfies (FL.1). Furthermore, it satisfies sub-homogeneity of
degree minus one and weak monotonicity.

A more extensive overview of this whole literature can be found in
Russell and Schworm (2009). This article includes a discussion of
some additional axioms proposed in this literature (e.g., continuity in
technologies and in input quantities: see Russell (1990)). Further-
more, it concentrates on the properties satisfied on a class of
technologies generated by standard mathematical-programming
methods rather than general technologies, which are the traditional
focus in this literature.

All the previously cited articles deal with radial efficiency
measures, but close to nothing has been done so far for directional
efficiency measures.

3.2. Axioms for directional efficiency measures

We can now restate the desirable properties of efficiencymeasures in
a directional framework by simply transposing the properties proposed
by Färe and Lovell (1978), apart from the redundant axiom (FL.4). Let us
define a directional input efficiency measure as the mapping DE :
RN

þ × RM
þ × RN

þ→Rþ∪ −∞; + ∞f g which must satisfy the following
properties:

DFL.1: If x∈L(y), then DE(x,y ;g)=0⇔x∈EffL(y);
DFL.2: If x∈L(y), then DE(x+αg,y ;g)=DE(x,y ;g)+α for all α

such that x+αg∈L(y);
DFL.3: If x∈L(y), u≥x and u≠x, then DE(x,y ;g)bDE(u,y ;g).

The first property is very similar to (FL.1). It states that a directional
efficiencymeasure should identify all points of the efficient set. The only
difference with the earlier approach is that efficiency is now
characterized by a zero score. The second property transposes the
2 The name Russell efficiency measure is a misnomer. First, because the measure
was first published in Färe and Lovell (1978). Second and foremost, Russell (1985,
1988) advocates the radial efficiency measure and even explicitly criticizes the use of
this moniker (see Russell, 1998).
homogeneity property (FL.2) into a translation property. The last
monotonicity property requires that an input vector which uses at least
more of one input should result in a less favorable efficiency measure.3

An obvious candidate for a “good” efficiency measure is the input
directional distance function defined above. However, as established
later in this section, it does not fulfill all the of directional Färe–Lovell
requirements.

Let us first state the following proposition that is helpful to deal
with the properties of the input directional distance function. In the
following {en}n=1,…,N denotes the canonical basis of RN .

Proposition 3.1. Under L.1–L.4, we have for all y∈RM
þ :

EffL yð Þ = ∩
g∈RN

þ /f0g
WEffgL yð Þ:

Proof. Assume that x∈EffL(y). By definition, there exists no u≤x with
u≠x, such that u∈L(y). In other words, there exists no βN0 and g∈RN

þ
such that x−βg=u∈L(y). We deduce that x∈∩g∈RN

þ /f0gWEffgL yð Þ.
Therefore, EffL yð Þ⊂∩g∈RN

þ /f0gWEffgL yð Þ. To show the converse, assume
that x∉EffL(y). In such a case, there is some u∈L(y) such that u≤x and
u≠x. Consequently, there is some n∈{1,...,N} such that unbxn. Hence,
there is some βN0 such that x−βen∈L(y). Thus, x∉WEffenL(y), and
consequently x∉∩g∈RN

þ /f0gWEffgL yð Þ. Thus, ∩g∈RN
þ /f0gWEffgL yð Þ⊂EffL yð Þ,

and the converse is shown. □
This result has an immediate corollary:

Corollary 3.2. Under L.1–L.4, we have for all y∈RM
þ :

EffL yð Þ = ∩
n=1; :::;N

WEffen L yð Þ:

It is possible to go a bit further by connecting the isoquant and the
directional weak efficient subset in the case when input factors are
essential (i.e., there is a minimal level needed of all inputs to produce
some outputs). Input factors are essential if for all y≠0 we have
L yð Þ⊂RN

++.

Proposition 3.3. Under L.1–L.4, and if the input factors are essential,
then we have for all y∈RM

þ / 0f g :

IsoqL yð Þ = ∪
g∈RN

þ /f0g
WEffgL yð Þ:

Proof. Assume that x∈∪g∈RN
þ /f0gWEffgL yð Þ. In such a case, there is some

g≠0 such that for all βN0, x−βg∉L(y). Since the inputs are essential,
we have xN0. Therefore, there is no βN0 such that x−βx∈L(y).
Consequently, there is no λ∈ [0,1[ such that λx∈L(y) and we deduce
that x∈L(y). Therefore, ∪g∈RN

þ /f0gWEffgL yð Þ⊂IsoqL yð Þ. Conversely, if
x∈ IsoqL(y), then x∈WEffxL(y). Hence, x∈∪g∈RN

þ /f0gWEffgL yð Þ and we
deduce that IsoqL yð Þ⊂∪g∈RN

þ /f0gWEffgL yð Þwhich ends the proof. □
The following corollary is then quite natural:

Proposition 3.4. Under L.1–L.4, and if the input factors are essential,
then we have for all y∈RM

þ /f0g :

IsoqL yð Þ = ∪
n=1; :::;N

WEffen L yð Þ:
congested with some input vectors exhibiting decreasing marginal productivity. In
other words, an increase in the quantity of one input could lead to a lower output level
(and sometimes to an infeasible production combination). In such a case, an increase
in the congested input should not result in a decrease but rather in an increase of the
efficiency measure since the output level y may not be producible any more with this
increased input bundle. Therefore, (DFL.3) should only hold when inputs are strongly
disposable.
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4 Briec (2000) was the first to define a slightly more general directional Färe–Lovell
efficiency measure.
As noted earlier (see Eq. (2.7)), a well-known property of the
input directional distance function is that it exhibits the transla-
tion property (DFL.2). However, though by definition, Di(x,y ;g)=
0⇔x∈WEffgL(y), this does not imply that x belongs to EffL(y). This
can be shown by means of a simple counterexample as in Färe and
Lovell (1978). Hence, the computation of Di(x,y ;g) for a given
direction g does not allow to conclude whether a production plan is
efficient or not. Thus, (DFL.1) is not true in general. In fact, x∈EffL(y)
implies that Di(x,y ;g)=0, but the converse is only true in the
special case when EffL(y)=WEffgL(y). Nonetheless, there exists a
general equivalence that holds when the input directional distance
function is null for all possible directions, as stated in the following
proposition:

Proposition 3.5. Under L.1–L.4, for all (x,y)∈T, x∈EffL(y) if and only if
Di(x,y ;g)=0 for all g∈RN

þ /f0g.

Proof. We have Di x; y; gð Þ = 0;∀g∈RN
þ⇔x∈WEffgL yð Þ;∀g∈RN

þ⇔
x∈∩g∈Rþ

N
WEffgL yð Þ. □

This proposition has an immediate corollary:

Corollary 3.6. Under L.1–L.4, for all (x,y)∈T, x∈EffL(y) if and only if
maxn=1,…,NDi(x,y ;en)=0.

Hence, the traditional input directional distance function in a given
direction cannot identify efficient points unless WEffgL(y)=EffL(y),
which is a serious drawback for an efficiency measure.

Paralleling these results one can characterize the isoquant using
the fact that the isoquant is the union of the directional isoquant.

Proposition 3.7. Under L.1–L.4, if the input factors are essential, then for
all (x,y)∈T with y≠0, x∈ IsoqL(y) if and only if Di(x,y ;g)=0 for all
g∈RN

þ /f0g.

Hence, we can deduce the following corollary:

Corollary 3.8. Under L.1–L.4, if the input factors are essential, then for all
(x,y)∈T with y≠0, x∈ IsoqL(y) if and only if minn=1,…,NDi(x,y ;en)=0.

Now, if inputs are only weakly disposable then (DFL.3) fails to
hold. However, as stated earlier, we do not want to impose this
property of the efficiency measure when inputs are only weakly
disposable. We rather want (DFL.3) to hold when they are strongly
disposable (L.4). But, this is not the case as shown in the following
example.

Example 3.9. Let us define the input sets L yð Þ = x1; x2ð Þ∈R2
þ :

�
min x1; x2ð Þ≥yg for y∈Rþ . This technology satisfies L.1 to L.6. Now,
for g=(1,1), x⁎=(y,y)∈L(y) and x=(y,y+�)∈L(y) with εN0, we
have x≥x⁎, x≠x⁎ and DE(x⁎,y ;g)=DE(x,y ;g)=0 which contradicts
(DFL.3).

In fact, L.4 only implies a weak monotonicity condition which can
be defined as:

DFL.3W: If x∈L(y) and u≥x, then DE(x,y ;g)≤DE(u,y ;g).

This is shown in the following proposition.

Proposition 3.10. Under L.1–L.3, the input directional distance function
satisfies (DFL.3W) if and only if inputs are strongly disposable.

Proof. Chambers et al. (1996) have shown that the input directional
distance function is weakly monotonic under a free disposal assump-
tion. Conversely, if u≥x and the directional distance function is weakly
monotonic, then DE(x,y ;g)≤DE(u,y ;g). However, x∈L(y)⇔DE(x,y ;
g)≥0. Consequently, DE(u,y ;g)≥0 implies u∈L(y). Hence, L.4 holds
and the reciprocal is established. □
To summarize the results of this section succinctly, the input
directional distance function satisfies (DFL.2), but neither (DFL.1) nor
(DFL.3). However, it satisfies (DFL.3W) when the strong disposability
assumption is imposed. One way to improve the properties of this
distance function consists in imposing a more restrictive property,
such as convexity of the input set. However, if we do not want to
change the assumptions, then another type of directional efficiency
measure is needed. Notice that the directional distance function can
be easily computed when the production technology is non-
parametric (see, for instance, Guironnet and Peypoch, 2007 and
Barros et al., 2011).

4. Other directional efficiency measures

In this section, paralleling Färe and Lovell (1978), we characterize a
Färe–Lovell input directional efficiency measure. Furthermore, we also
define a directional version of the Zieschang (1984) input efficiency
measure. Finally, an input directional version of the Färe (1975)
asymmetric efficiencymeasure is established. The latter two definitions
are – to the best of our knowledge – entirely new in the literature.

4.1. Efficient subset and Färe–Lovell directional efficiency measure

Denoting by⊙ the Schur product of two vectors (element by element
product), let us define the function DFL : RN

þ × RM
þ × RN

þ→Rþ∪ −∞;∞f g
as follows:

DFL x; y; gð Þ = supβ∈RI gð Þ
þ

1
j I gð Þj ∑

n∈I gð Þ
βn : x−β⊙g∈L yð Þ

( )
if x∈L yð Þ

−∞ otherwise;

8>><
>>:

ð4:1Þ

where I(g) is the index subset defined by I(g)={n∈{1,…,N}:gnN0} and
RI gð Þ

þ = ∑n∈I gð Þαnen : αn≥0
� �

. |I(g)| stands for the cardinality of I(g).
Obviously, if g∈RN

++ , I(g)={1,…,N}. Since this function is the
directional equivalent of theFäre–Lovell input efficiencymeasuredefined
by Färe and Lovell (1978), we term it the Färe–Lovell input directional
efficiencymeasure.4 Note that themaximization is only computed when
x∈L(y).Otherwise, someof theβparameters couldbenegativeand some
positive at the same time. The Färe–Lovell input directional efficiency
measure reduces to the inputdirectional input directional in thedirection
gwhen x∈L(y) and the constraintβn=β is added for alln∈ I(g), or in the
case of a single input dimension. It is a directional efficiencymeasure but
the direction is not preassigned as in the regular directional input
distance function. Therefore, it can be rewritten as the maximization of
the average of some other β coefficients weighted by the inverse of the
directions by replacing βngn=β′n:

DFL x; y; gð Þ = maxβ′∈RI gð Þ
þ

1
j I gð Þj ∑

n∈I gð Þ

β′
n

gn
: x−β′∈Ł yð Þ

( )
if x∈L yð Þ

−∞ otherwise:

8>><
>>:

One of the main drawbacks of the radial Färe–Lovell efficiency
measure is that it does not satisfy the homogeneity property
(FL.2) (see Färe et al., 1983) which is satisfied by the radial input
efficiency measure. Instead, the Färe–Lovell efficiency measure is sub-
homogeneous of degree minus one. The equivalent of the homoge-
neity property for a directional efficiency measure is the translation
property. The Färe–Lovell input directional efficiency measure is no
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more convenient than its radial equivalent in that it does not satisfy
the translation property (DFL.2) (see infra).

However, it can identify points in the efficient set EffL(y) (DFL.1),
while the directional distance function cannot. It also satisfies (DFL.3).
These results are stated in the following proposition:

Proposition 4.1. Under assumptions L.1 to L.4, if g∈RN
++ , then the

Färe–Lovell input directional efficiency measure satisfies (DFL.1).
Moreover, for all g∈RN

þ / 0f g it satisfies (DFL.3) on RN
þ × RM

þ × RN
++ .

Proof. If g∈RN
++ , then I(g)={1,…,N}. Let us prove (DFL.1). Let x∈

L(y) such that DFL(x,y ;g)=0 and assume that x∉EffL(y). Therefore,
there exists u≤x with u≠x such that u∈L(y). Hence, since g∈RN

++ ,
one can always find a vector α whose elements are αn≥0,n=1,…,N
with at least one n for which αnN0 such that u=x−α⊙g∈L(y). This
contradicts the fact thatDFL(x,u ;g)=0. To show the converse, pick any
x∈EffL(y) and assume that DFL(x,y ;g)N0. From this last assumption,
there exists x−β⊙g∈L(y) with βn≥0 for n=1,…,N and at least one n
for which βnN0. Now, u=x−β⊙g is such that u≤x, u≠x and u∈L(y).
Hence, we obtain a contradictionwith the first assumption. Let us prove
(DFL.3). Let x∈L(y) and u≥x such that u≠x. By hypothesis, since

the strong disposal assumption holds, β∈RI gð Þ
þ : x−β⊙g∈L yð Þ

n o
⊂

β∈RI gð Þ
þ : u−β⊙g∈L yð Þ

n o
, and the result follows. □

The next result shows that the Färe–Lovell input directional
efficiency measure cannot exhibit the translation property.

Proposition 4.2. Assume that g∈RN
++ . The Färe–Lovell input direc-

tional efficiency measure does not satisfy (DFL.2) for all technologies
satisfying L.1–L.4.

Proof. To prove this, we construct a technology that is not compatible
with (DFL.2). Suppose that N=2 and M=1. Let y≠0 and suppose
that:

V0 yð Þ = x∈R2
þ : x1≥1; x2≥4

n o
:

Let us denote x0=(4,4). Let �N0 and let us define the point:

x� = x0−
�

2
g

and consider the input set:

V� yð Þ = x∈R2
þ : x≥x�

n o
:

Let us define the input set:

L yð Þ = V0 yð Þ∪V� yð Þ:

Obviously, x0 and x� are situated in L(y) and are the only two
efficient points in L(y). Assume that gN0, then it follows that

DFL x0; yð Þ = 1 = 2ð Þ max
4−1
g1

+
4−4
g2

;
4− 4−�ð Þ

g1
+

4− 4−�ð Þ
g2

� �

= 1= 2ð Þmax
3
g1

;
�

g1
+

�

g2

� �
:

For � sufficiently small, we have:

DFL x0; yð Þ = 3
2g1

:

However, if DFL is translation invariant, then we have:

DFL x0; yð Þ = DFL x� + �g; yð Þ = DFL x�; yð Þ + � = �;

which is a contradiction. □
But, the Färe–Lovell input directional efficiency measure does not
compare the input vector with the closest efficient point. Nor does it
use a predetermined path to reach this point. Following a specific
direction g, which can be the average input mix or keeping the input
mix proportions unchanged, may have some economic meaning. But,
following any direction does not have an evident economic sense. This
is why we define another measure of efficiency which is very close to
this Färe–Lovell one, but that is more economically meaningful.

Notice that so far we have assumed that the direction g has
positive components. But, one can extend this approach to consider
the situation where some inputs are fixed in the short run. In such a
case, the null components of the direction vector correspond to the
subvector of fixed inputs. Everything developed so far obviously
remains true for all input directional efficiency measures developed in
this contribution.

4.2. “Additive formulation” of the Zieschang measure and decomposition
of the Färe–Lovell measure

The lack of translation property of the Färe–Lovell input directional
efficiency measure implies that it can be useful to define an additive
analog of the multiplicative Zieschang (1984) measure to explore a
way out. The interest of the Zieschang measure comes from the
fact that it preserves homogeneity. We define over RM

þ × RN
þ ×

RN
++ →Rþ∪ −∞f g the function

DZ x; y; gð Þ = DFL x−Di x; y; gð Þg; y; gð Þ + Di x; y; gð Þ if x∈L yð Þ
−∞ otherwise:

�
ð4:2Þ

This Zieschang input directional efficiency measure proceeds in
two steps. First, it reaches a weakly efficient point (in WEffgL(y)).
Second, it translates this last input vector to one element of the
efficient subset. Hence, if x∈EffL(y), then the Zieschang input
directional efficiency measure equals the Färe-Lovell input directional
efficiency measure. By contrast, when x−Di(x,y ;g)∈EffL(y), then it
equals the input directional distance function.

Proposition 4.3. Under assumptions L.1 to L.4, if g∈RN
++ , then the

Zieschang input directional efficiency measure satisfies (DFL.1). More-
over, for all g∈RN

þ /f0g, it satisfies (DFL.2).

Proof. (DFL.1) and (DFL.2) are obvious by construction. □

Unfortunately, the Zieschang input directional efficiency measure
fails to satisfy (DFL.3) and (DFL.3W).

Proposition 4.4. Assume that g∈RN
++ . The Zieschang input directional

efficiency measure does not satisfy (DFL.3W) for all technologies
satisfying L.1–L.4.

Proof. To prove this, we construct a technology that is not compatible
with (DFL.2). Suppose that N=2 andM=1. Let y≠0 and suppose that

V0 yð Þ = x∈R2
þ : x1≥1; x2≥4

n o
;

and

V1 yð Þ = x∈R2
þ : x1≥3; x2≥3

n o
:

Assume that L(y)=V0(y)∪V1(y). Let �N0 and let us define the point

x0 = 3;4ð Þ and x� = 3 + �;4ð Þ:

We have obviously x�≥x0. Since the general case (gN0) can be
deducedvia a single change in theunits ofmeasurement,we suppose that
g=(1,1). We have D(x0,y;g)=0 and DFL(x0,y;g)=1, consequently DZ
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(x0,y;g)=1. Moreover, D(x�,y;g)=� and DFL x�−�g; y; gð Þ = 1−�
2 , con-

sequentlyDZ x�; y; gð Þ = 1 + �
2 . Hence, for � sufficiently smallDZ(x�,y;g)b

DZ(x0,y;g), which contradicts (DFL.3W). □
Now, using the translation property (2.7), we obtain:

DZ x; y; gð Þ = DFL x; y; gð Þ−Di x; y; gð Þ + Di x; y; gð Þ ð4:3Þ

= DFL x; y; gð Þ ð4:4Þ
This formulation serves to show how to decompose the Zieschang

input directional efficiency measure to compute it in two steps. The
first step translates an input vector onto the frontier, and the second
step computes the Färe–Lovell measure of the thus translated input.

Paralleling Bol (1986) one can prove a more general result: no
directional efficiency measure can simultaneously satisfy these three
requirements. The following example provides a technology forwhich an
efficiency measure satisfying (DFL.1) and (DFL.2) cannot satisfy (DFL.3):

Example 4.5. We consider a technology with 2 inputs and one output.
Pick a vector g=(1,1). For all y∈Rþ we define L(y) as follows:

L yð Þ =
x1 + x2≥2y for 0≤x1≤y

x2≥y for y≤x1≤y + 2
x1 + x2≥2 + 2y for 2 + y≤x1

8<
: ð4:5Þ

It is easy to see that this correspondence fulfills the basic axioms L1–
L6. For μ≥0 let us define xμ=(y+μ,y).

We have for μ≥2:

δμ = max δ : xμ−δ 1;1ð Þ∈L yð Þ� �
= max y + μ + y−δ−δ≥2 + 2yf g

=
μ−2
2

:

að Þ
bð Þ
cð Þ

ð4:6Þ

By definition, xμ−δμ(1,1)∈Eff(L(y)) for μN2. By hypothesis, a
distance function, DE, must satisfy

DE xμ ; y; 1;1
� �

= DE xμ−δμ 1;1ð Þ; y; 1;1
� 	

+ δμ

for μN2. Thus, if μ converges to 2 both DE(xμ,y ;1,1) and δμ converges to
0. On the other hand, x2=(y+2,y)∉EffL(y). Hence, DE(x2,y ;1,1)N0.
Thus, obviously a μN2 exists such that

DE xμ ; y; 1;1
� �

bDE x2; y; 1;1
� 	

ð4:7Þ

and since xμ≥x2 and xμ≠x2, this is a contradiction of (DFL.3).

4.3. Asymmetric Färe input directional efficiency measure

Färe (1975) introduced an asymmetric input efficiency measure
(see also Färe et al., 1983) defined by:

AF x; yð Þ = minn∈I xð Þ inf λ : 11N + λ−1ð Þenð Þ⊙x∈L yð Þf g if x∈L yð Þ
+ ∞ otherwise:

�
ð4:8Þ

where I(x)={n∈ {1,…,N} :xnN0} and 11N is the unit vector of RN . This
measure is based upon a proportional reduction of each input
dimension separately in a first step. The asymmetric Färe measure is
then calculated by taking the minimum value of the scores obtained
from each input dimension. Clearly, this efficiency measure allows
characterizing the efficient subset of the input set (i.e., it satisfies
(FL.1)).

It is relatively easy todefineananalogousmeasure in the contextof the
directional distance function. The asymmetric Färe input directional
efficiency measure is the map DAF : RN

þ × RM
þ × RN

þ→R∪ −∞f g defined
by:

DAF x; y; gð Þ = maxn∈I gð Þ sup β : x−βgnen∈L yð Þf g if x∈L yð Þ
−∞ otherwise:

�
ð4:9Þ

It is shown below that, by construction, this measure indeed
allows identifying a strongly efficient point on the frontier. Hence, it
satisfies (DFL.1).

Proposition 4.6. Under assumptions L1–L4, if g∈RN
++ , then the

asymmetric Färe input directional efficiency measure (DAF) satisfies
(DFL.1) and (DFL.3).

Proof. (a) We need to prove that if x∈L(y), then DAF(x,y ;g)=
0⇔x∈EffL(y). If g∈RN

++ , then I(g)={1,…,N}. Suppose that x∈L(y)
and assume there is some u∈L(y) such that u≤x and u≠x. In such a
case, there is some n∈{1,…,N} such that unbxn. Therefore, maxn=1…N

{β:x−βgnen∈L(y)}N0 and consequently DAF(x,y;g)N0. Thus, DAF(x,y;
g)=0 implies that x∈EffL(y). Conversely, if DAF(x,y ;g)N0, then
x∉EffL(y), which ends the first part of the proof. (b) We need to
prove that if x∈L(y) and u≥xwith u≠x, then DAF(x,y ;g)bDAF(u,y ;
g). Suppose that x∈L(y), u≥x and u≠x. Since u≥x, Di(u,y ;gnen)≥Di

(x,y ;gnen) for each n. However, there is also some n0∈ {1,…,N} such
that un0

Nxn0
, and since g∈RN

++ , this implies thatDi(u,y ;gn0
en0

)NDi(x,
y ;gn0

en0
). Hence, DAF(u,y ;g)=maxn=1...NDi(u,y ;gnen)Nmaxn=1…

NDi(x,y ;gnen)=DAF(x,y ;g), which ends the proof. □
Note that the proof of the first part of the above proposition can

also be established as an immediate consequence of Corollary 3.2. It is
easy to check that this measure fails to satisfy (DFL.2).

5. Concluding comments

This contribution has summarized the possibilities to define
efficiencymeasures complyingwith Koopmans' definition of technical
efficiency in the framework of the traditional radial distance functions
and of the rather recently introduced directional distance functions.
After summarizing the original axiomatic literature on technical
efficiency in terms of radial and non-radial efficiency measures, we
redefine these same axioms in the context of the input directional
efficiency measures.

Thereafter, we analyze the properties satisfied by the input
directional distance function and the Färe–Lovell directional efficien-
cy measure. Neither of these two measures turns out to simulta-
neously satisfy all of these newly defined properties. Furthermore, we
also define an additive formulation of the Zieschang (1984) measure.
Finally, we define a directional version of the asymmetric Färe (1975)
efficiency measure. Again, both of these newly defined input
directional measures of technical efficiency do not satisfy all of the
new axioms. More generally, we prove that no input directional
efficiency measure can satisfy all of the newly required properties.
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